A comparison of linear and mixture models for discriminant analysis under nonnormality.
نویسندگان
چکیده
Methods for discriminant analysis were compared with respect to classification accuracy under nonnormality through Monte Carlo simulation. The methods compared were linear discriminant analyses based both on raw scores and on ranks; linear logistic discrimination; and mixture discriminant analysis. Linear discriminant analysis and linear logistic discrimination were suboptimal in a number of scenarios with skewed predictors. Linear discriminant analysis based on ranks yielded the highest rates of classification accuracy in only a limited number of situations and did not produce a practically important advantage over competing methods. Mixture discriminant analysis, with a relatively small number of components in each group, attained relatively high rates of classification accuracy and was most useful for conditions in which skewed predictors had relatively small values of kurtosis.
منابع مشابه
Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کاملComparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification
We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this applicatio...
متن کاملPrediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods : In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were ...
متن کاملDiscriminant Analysis for ARMA Models Based on Divergency Criterion: A Frequency Domain Approach
The extension of classical analysis to time series data is the basic problem faced in many fields, such as engineering, economic and medicine. The main objective of discriminant time series analysis is to examine how far it is possible to distinguish between various groups. There are two situations to be considered in the linear time series models. Firstly when the main discriminatory informati...
متن کاملOn Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavior research methods
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2009